Lack of Connexin43-Mediated Bergmann Glial Gap Junctional Coupling does not Affect Cerebellar Long-Term Depression, Motor Coordination, or Eyeblink Conditioning

نویسندگان

  • Mika Tanaka
  • Kazuhiko Yamaguchi
  • Tetsuya Tatsukawa
  • Chieko Nishioka
  • Hiroshi Nishiyama
  • Martin Theis
  • Klaus Willecke
  • Shigeyoshi Itohara
چکیده

Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43), a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43(fl/fl):S100b-Cre), which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43(fl/fl):S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43(fl/fl):S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in their cerebellar slices. In addition, at the behavioral level, Cx43(fl/fl):S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connexin43 and Bergmann Glial Gap Junctions in Cerebellar Function

Connexin43 (Cx43), a major component of astrocytic gap junctions, is abundantly expressed in Bergmann glial cells (BGCs) in the cerebellum, but the function of Cx43 in BGCs is largely unknown. BGCs are specialized astrocytes closely associated with Purkinje cells. Here, we review our recent studies of the role of Cx43 in gap junctional coupling between BGCs and in cerebellar function. We genera...

متن کامل

Deficient Cerebellar Long-Term Depression, Impaired Eyeblink Conditioning, and Normal Motor Coordination in GFAP Mutant Mice

Mice devoid of glial fibrillary acidic protein (GFAP), an intermediate filament protein specifically expressed in astrocytes, develop normally and do not show any detectable abnormalities in the anatomy of the brain. In the cerebellum, excitatory synaptic transmission from parallel fibers (PFs) or climbing fibers (CFs) to Purkinje cells is unaltered, and these synapses display normal short-term...

متن کامل

Reevaluating the Role of LTD in Cerebellar Motor Learning

Long-term depression at parallel fiber-Purkinje cell synapses (PF-PC LTD) has been proposed to be required for cerebellar motor learning. To date, tests of this hypothesis have sought to interfere with receptors (mGluR1) and enzymes (PKC, PKG, or αCamKII) necessary for induction of PF-PC LTD and thereby determine if cerebellar motor learning is impaired. Here, we tested three mutant mice that t...

متن کامل

Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning.

There is increasing evidence that, in addition to its major functional role in the regulation of fine motor control, the cerebellum is involved in other important functions, such as sensory-motor learning and memory. Classical conditioning of the eyeblink or nictitating membrane response (and other discrete behavioral responses) is a form of sensory-motor learning that depends crucially upon th...

متن کامل

Long-Term Potentiation of Glial Synaptic Currents in Cerebellar Culture

Glial cells in the brain express neurotransmitter receptors and can respond appropriately to application of exogenous neurotransmitters such as glutamate. However, activation of receptors by endogenous, synaptically released transmitter has been difficult to demonstrate directly. Using cell-pair recording in cerebellar cultures from embryonic mouse, it is shown that activation of a cerebellar g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in Behavioral Neuroscience

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2008